

 Navigation

 	
 index

 	
 next |

 	Toro 1.0.1.dev0 documentation

toro: Synchronization primitives for Tornado coroutines

[image: _images/toro.png]
Toro logo by Musho Rodney Alan Greenblat [http://whimsyload.com]

With Tornado’s gen [http://www.tornadoweb.org/en/stable/gen.html] module, you can turn Python generators into full-featured
coroutines, but coordination among these coroutines is difficult without
mutexes, semaphores, and queues.

Toro provides to Tornado coroutines a set of locking primitives and queues
analogous to those that Gevent provides to Greenlets, or that the standard
library provides to threads.

Important

Toro is completed and deprecated; its features have been merged
into Tornado. Development of locks and queues for Tornado coroutines continues
in Tornado itself.

The Wait / Notify Pattern

Toro’s primitives follow a “wait / notify pattern”: one
coroutine waits to be notified by another. Let’s take Condition as an
example:

>>> import toro
>>> from tornado import ioloop, gen
>>> loop = ioloop.IOLoop.current()
>>> condition = toro.Condition()
>>> @gen.coroutine
... def waiter():
... print "I'll wait right here"
... yield condition.wait() # Yield a Future
... print "I'm done waiting"
...
>>> @gen.coroutine
... def notifier():
... print "About to notify"
... condition.notify()
... print "Done notifying"
...
>>> @gen.coroutine
... def runner():
... # Yield two Futures; wait for waiter() and notifier() to finish
... yield [waiter(), notifier()]
... loop.stop()
...
>>> future = runner(); loop.start()
I'll wait right here
About to notify
Done notifying
I'm done waiting

Wait-methods take an optional deadline argument, which is either an
absolute timestamp:

loop = ioloop.IOLoop.current()

Wait up to 1 second for a notification
yield condition.wait(deadline=loop.time() + 1)

...or a datetime.timedelta for a deadline relative to the current time:

Wait up to 1 second
yield condition.wait(deadline=datetime.timedelta(seconds=1))

If there’s no notification before the deadline, the Toro-specific
Timeout exception is raised.

The Get / Put Pattern

Queue and its subclasses support methods Queue.get() and
Queue.put(). These methods are each both a wait-method and a
notify-method:

	Queue.get() waits until there is an available item in the queue, and
may notify a coroutine waiting to put an item.

	Queue.put() waits until the queue has a free slot, and may notify a
coroutine waiting to get an item.

Queue.get() and Queue.put() accept deadlines and raise
Timeout if the deadline passes.

See the Producer-consumer example.

Additionally, JoinableQueue supports
the wait-method JoinableQueue.join()
and the notify-method JoinableQueue.task_done().

Contents

	Examples
	Producer-consumer example

	Lock example - graceful shutdown

	Event example - a caching proxy server

	Queue and Semaphore example - a parallel web spider

	toro Classes
	Primitives
	AsyncResult

	Lock

	RWLock

	Semaphore

	BoundedSemaphore

	Condition

	Event

	Queues
	Queue

	PriorityQueue

	LifoQueue

	JoinableQueue

	Exceptions

	Class relationships

	Frequently Asked Questions
	What’s it for?

	Why the name?

	Why do I need synchronization primitives for a single-threaded app?

	Why no RLock?

	Has Toro anything to do with Tulip?

	Changelog
	Changes in Version 1.0.1

	Changes in Version 1.0

	Changes in Version 0.8

	Changes in Version 0.7

	Changes in Version 0.6

	Changes in Version 0.5

	Changes in Version 0.4

	Changes in Version 0.3

	Changes in Version 0.2

	Changes in Version 0.1.1

	Version 0.1

Source

Is on GitHub: https://github.com/ajdavis/toro

Bug Reports and Feature Requests

Also on GitHub: https://github.com/ajdavis/toro/issues

Indices and tables

	Index

	Search Page

 Copyright 2012, A. Jesse Jiryu Davis.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Toro 1.0.1.dev0 documentation

Examples

	Producer-consumer example

	Lock example - graceful shutdown

	Event example - a caching proxy server

	Queue and Semaphore example - a parallel web spider

 Copyright 2012, A. Jesse Jiryu Davis.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Toro 1.0.1.dev0 documentation

 	Examples

Producer-consumer example

A classic producer-consumer example for using JoinableQueue.

from tornado import ioloop, gen
import toro
q = toro.JoinableQueue(maxsize=3)

@gen.coroutine
def producer():
 for item in range(10):
 print 'Sending', item
 yield q.put(item)

@gen.coroutine
def consumer():
 while True:
 item = yield q.get()
 print '\t\t', 'Got', item
 q.task_done()

if __name__ == '__main__':
 producer()
 consumer()
 loop = ioloop.IOLoop.current()

 def stop(future):
 loop.stop()
 future.result() # Raise error if there is one

 # block until all tasks are done
 q.join().add_done_callback(stop)
 loop.start()

 Copyright 2012, A. Jesse Jiryu Davis.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Toro 1.0.1.dev0 documentation

 	Examples

Lock example - graceful shutdown

Graceful shutdown, an example use case for Lock.

poll continuously fetches http://tornadoweb.org, and after 5 seconds,
shutdown stops the IOLoop. We want any request that poll has begun to
complete before the loop stops, so poll acquires the lock before starting
each HTTP request and releases it when the request completes. shutdown also
acquires the lock before stopping the IOLoop.

(Inspired by a post [https://groups.google.com/d/topic/python-tornado/CXg5WwufOvU/discussion] to the Tornado mailing list.)

import datetime
from tornado import ioloop, gen, httpclient
import toro

lock = toro.Lock()
loop = ioloop.IOLoop.current()

@gen.coroutine
def poll():
 client = httpclient.AsyncHTTPClient()
 while True:
 with (yield lock.acquire()):
 print 'Starting request'
 response = yield client.fetch('http://www.tornadoweb.org/')
 print response.code

 # Wait a tenth of a second before next request
 yield gen.Task(loop.add_timeout, datetime.timedelta(seconds=0.1))

@gen.coroutine
def shutdown():
 # Get the lock: this ensures poll() isn't in a request when we stop the
 # loop
 print 'shutdown() is acquiring the lock'
 yield lock.acquire()
 loop.stop()
 print 'Loop stopped.'

if __name__ == '__main__':
 # Start polling
 poll()

 # Arrange to shutdown cleanly 5 seconds from now
 loop.add_timeout(datetime.timedelta(seconds=5), shutdown)
 loop.start()

 Copyright 2012, A. Jesse Jiryu Davis.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Toro 1.0.1.dev0 documentation

 	Examples

Event example - a caching proxy server

An oversimplified caching HTTP proxy - start it, and configure your browser to
use localhost:8888 as the proxy server. It doesn’t do cookies or redirects,
nor does it obey cache-control headers.

The point is to demonstrate Event. Imagine a client requests a
page, and while the proxy is downloading the page from the external site, a
second client requests the same page. Since the page is not yet in cache, an
inefficient proxy would launch a second external request.

This proxy instead places an Event in the cache, and the second
client request waits for the event to be set, thus requiring only a single
external request.

from tornado import httpclient, gen, ioloop, web
import toro

class CacheEntry(object):
 def __init__(self):
 self.event = toro.Event()
 self.type = self.body = None

cache = {}

class ProxyHandler(web.RequestHandler):
 @web.asynchronous
 @gen.coroutine
 def get(self):
 path = self.request.path
 entry = cache.get(path)
 if entry:
 # Block until the event is set, unless it's set already
 yield entry.event.wait()
 else:
 print path
 cache[path] = entry = CacheEntry()

 # Actually fetch the page
 response = yield httpclient.AsyncHTTPClient().fetch(path)
 entry.type = response.headers.get('Content-Type', 'text/html')
 entry.body = response.body
 entry.event.set()

 self.set_header('Content-Type', entry.type)
 self.write(entry.body)
 self.finish()

if __name__ == '__main__':
 print 'Listening on port 8888'
 print
 print 'Configure your web browser to use localhost:8888 as an HTTP Proxy.'
 print 'Try visiting some web pages and hitting "refresh".'
 web.Application([('.*', ProxyHandler)], debug=True).listen(8888)
 ioloop.IOLoop.instance().start()

 Copyright 2012, A. Jesse Jiryu Davis.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Toro 1.0.1.dev0 documentation

 	Examples

Queue and Semaphore example - a parallel web spider

A simple web-spider that crawls all the pages in http://tornadoweb.org.

spider() downloads the page at base_url and any pages it links to,
recursively. It ignores pages that are not beneath base_url hierarchically.

This function demos two Toro classes: JoinableQueue and
BoundedSemaphore.
The JoinableQueue is a work queue; it begins containing only
base_url, and each discovered URL is added to it. We wait for
join() to complete before exiting. This ensures that
the function as a whole ends when all URLs have been downloaded.

The BoundedSemaphore regulates concurrency. We block trying to
decrement the semaphore before each download, and increment it after each
download completes.

import HTMLParser
import time
import urlparse
from datetime import timedelta

from tornado import httpclient, gen, ioloop

import toro

@gen.coroutine
def spider(base_url, concurrency):
 q = toro.JoinableQueue()
 sem = toro.BoundedSemaphore(concurrency)

 start = time.time()
 fetching, fetched = set(), set()

 @gen.coroutine
 def fetch_url():
 current_url = yield q.get()
 try:
 if current_url in fetching:
 return

 print 'fetching', current_url
 fetching.add(current_url)
 urls = yield get_links_from_url(current_url)
 fetched.add(current_url)

 for new_url in urls:
 # Only follow links beneath the base URL
 if new_url.startswith(base_url):
 yield q.put(new_url)

 finally:
 q.task_done()
 sem.release()

 @gen.coroutine
 def worker():
 while True:
 yield sem.acquire()
 # Launch a subtask
 fetch_url()

 q.put(base_url)

 # Start worker, then wait for the work queue to be empty.
 worker()
 yield q.join(deadline=timedelta(seconds=300))
 assert fetching == fetched
 print 'Done in %d seconds, fetched %s URLs.' % (
 time.time() - start, len(fetched))

@gen.coroutine
def get_links_from_url(url):
 """Download the page at `url` and parse it for links. Returned links have
 had the fragment after `#` removed, and have been made absolute so, e.g.
 the URL 'gen.html#tornado.gen.coroutine' becomes
 'http://www.tornadoweb.org/en/stable/gen.html'.
 """
 try:
 response = yield httpclient.AsyncHTTPClient().fetch(url)
 print 'fetched', url
 urls = [urlparse.urljoin(url, remove_fragment(new_url))
 for new_url in get_links(response.body)]
 except Exception, e:
 print e, url
 raise gen.Return([])

 raise gen.Return(urls)

def remove_fragment(url):
 scheme, netloc, url, params, query, fragment = urlparse.urlparse(url)
 return urlparse.urlunparse((scheme, netloc, url, params, query, ''))

def get_links(html):
 class URLSeeker(HTMLParser.HTMLParser):
 def __init__(self):
 HTMLParser.HTMLParser.__init__(self)
 self.urls = []

 def handle_starttag(self, tag, attrs):
 href = dict(attrs).get('href')
 if href and tag == 'a':
 self.urls.append(href)

 url_seeker = URLSeeker()
 url_seeker.feed(html)
 return url_seeker.urls

if __name__ == '__main__':
 import logging
 logging.basicConfig()
 loop = ioloop.IOLoop.current()

 def stop(future):
 loop.stop()
 future.result() # Raise error if there is one

 future = spider('http://www.tornadoweb.org/en/stable/', 10)
 future.add_done_callback(stop)
 loop.start()

 Copyright 2012, A. Jesse Jiryu Davis.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Toro 1.0.1.dev0 documentation

toro Classes

Contents

	Primitives
	AsyncResult

	Lock

	RWLock

	Semaphore

	BoundedSemaphore

	Condition

	Event

	Queues
	Queue

	PriorityQueue

	LifoQueue

	JoinableQueue

	Exceptions

	Class relationships

Primitives

AsyncResult

	
class toro.AsyncResult(io_loop=None)[source]

	A one-time event that stores a value or an exception.

The only distinction between AsyncResult and a simple Future is that
AsyncResult lets coroutines wait with a deadline. The deadline can be
configured separately for each waiter.

An AsyncResult instance cannot be reset.

	Parameters:	
	io_loop: Optional custom IOLoop.

	
get(deadline=None)[source]

	Get a value once set() is called. Returns a Future.

The Future’s result will be the value. The Future raises
toro.Timeout if no value is set before the deadline.

	Parameters:	
	deadline: Optional timeout, either an absolute timestamp
(as returned by io_loop.time()) or a datetime.timedelta for
a deadline relative to the current time.

	
get_nowait()[source]

	Get the value if ready, or raise NotReady.

	
set(value)[source]

	Set a value and wake up all the waiters.

Lock

	
class toro.Lock(io_loop=None)[source]

	A lock for coroutines.

It is created unlocked. When unlocked, acquire() changes the state
to locked. When the state is locked, yielding acquire() waits until
a call to release().

The release() method should only be called in the locked state;
an attempt to release an unlocked lock raises RuntimeError.

When more than one coroutine is waiting for the lock, the first one
registered is awakened by release().

acquire() supports the context manager protocol:

>>> from tornado import gen
>>> import toro
>>> lock = toro.Lock()
>>>
>>> @gen.coroutine
... def f():
... with (yield lock.acquire()):
... assert lock.locked()
...
... assert not lock.locked()

Note

Unlike with the standard threading.Lock [http://docs.python.org/2/library/threading.html#lock-objects], code in a
single-threaded Tornado application can check if a Lock
is locked(), and act on that information without fear that another
thread has grabbed the lock, provided you do not yield to the IOLoop
between checking locked() and using a protected resource.

See also

Lock example - graceful shutdown

	Parameters:	
	io_loop: Optional custom IOLoop.

	
acquire(deadline=None)[source]

	Attempt to lock. Returns a Future.

The Future raises toro.Timeout if the deadline passes.

	Parameters:	
	deadline: Optional timeout, either an absolute timestamp
(as returned by io_loop.time()) or a datetime.timedelta for a
deadline relative to the current time.

	
locked()[source]

	True if the lock has been acquired

	
release()[source]

	Unlock.

If any coroutines are waiting for acquire(),
the first in line is awakened.

If not locked, raise a RuntimeError.

RWLock

	
class toro.RWLock(max_readers=1, io_loop=None)[source]

	A reader-writer lock for coroutines.

It is created unlocked. When unlocked, acquire_write() always changes
the state to locked. When unlocked, acquire_read() can changed the
state to locked, if acquire_read() was called max_readers times. When
the state is locked, yielding acquire_read()/meth:acquire_write
waits until a call to release_write() in case of locking on write, or
release_read() in case of locking on read.

The release_read() method should only be called in the locked-on-read
state; an attempt to release an unlocked lock raises RuntimeError.

The release_write() method should only be called in the locked on
write state; an attempt to release an unlocked lock raises RuntimeError.

When more than one coroutine is waiting for the lock, the first one
registered is awakened by release_read()/release_write().

acquire_read()/acquire_write() support the context manager
protocol:

>>> from tornado import gen
>>> import toro
>>> lock = toro.RWLock(max_readers=10)
>>>
>>> @gen.coroutine
... def f():
... with (yield lock.acquire_read()):
... assert not lock.locked()
...
... with (yield lock.acquire_write()):
... assert lock.locked()
...
... assert not lock.locked()

	Parameters:	
	max_readers: Optional max readers value, default 1.

	io_loop: Optional custom IOLoop.

	
acquire_read(deadline=None)[source]

	Attempt to lock for read. Returns a Future.

The Future raises toro.Timeout if the deadline passes.

	Parameters:	
	deadline: Optional timeout, either an absolute timestamp
(as returned by io_loop.time()) or a datetime.timedelta for
a deadline relative to the current time.

	
acquire_write(*args, **kwargs)[source]

	Attempt to lock for write. Returns a Future.

The Future raises toro.Timeout if the deadline passes.

	Parameters:	
	deadline: Optional timeout, either an absolute timestamp
(as returned by io_loop.time()) or a datetime.timedelta for
a deadline relative to the current time.

	
locked()[source]

	True if the lock has been acquired

	
release_read()[source]

	Releases one reader.

If any coroutines are waiting for acquire_read() (in case of full
readers queue), the first in line is awakened.

If not locked, raise a RuntimeError.

	
release_write()[source]

	Releases after write.

The first in queue will be awakened after release.

If not locked, raise a RuntimeError.

Semaphore

	
class toro.Semaphore(value=1, io_loop=None)[source]

	A lock that can be acquired a fixed number of times before blocking.

A Semaphore manages a counter representing the number of release() calls
minus the number of acquire() calls, plus an initial value. The acquire()
method blocks if necessary until it can return without making the counter
negative.

If not given, value defaults to 1.

acquire() supports the context manager protocol:

>>> from tornado import gen
>>> import toro
>>> semaphore = toro.Semaphore()
>>>
>>> @gen.coroutine
... def f():
... with (yield semaphore.acquire()):
... assert semaphore.locked()
...
... assert not semaphore.locked()

Note

Unlike the standard threading.Semaphore [http://docs.python.org/library/threading.html#threading.Semaphore], a Semaphore
can tell you the current value of its counter, because code in a
single-threaded Tornado app can check these values and act upon them
without fear of interruption from another thread.

See also

Queue and Semaphore example - a parallel web spider

	Parameters:	
	value: An int, the initial value (default 1).

	io_loop: Optional custom IOLoop.

	
acquire(deadline=None)[source]

	Decrement counter. Returns a Future.

Block if the counter is zero and wait for a release(). The
Future raises toro.Timeout after the deadline.

	Parameters:	
	deadline: Optional timeout, either an absolute timestamp
(as returned by io_loop.time()) or a datetime.timedelta for a
deadline relative to the current time.

	
counter

	An integer, the current semaphore value

	
locked()[source]

	True if counter is zero

	
release()[source]

	Increment counter and wake one waiter.

	
wait(deadline=None)[source]

	Wait for locked to be False. Returns a Future.

The Future raises toro.Timeout after the deadline.

	Parameters:	
	deadline: Optional timeout, either an absolute timestamp
(as returned by io_loop.time()) or a datetime.timedelta for a
deadline relative to the current time.

BoundedSemaphore

	
class toro.BoundedSemaphore(value=1, io_loop=None)[source]

	A semaphore that prevents release() being called too often.

A bounded semaphore checks to make sure its current value doesn’t exceed
its initial value. If it does, ValueError is raised. In most
situations semaphores are used to guard resources with limited capacity.
If the semaphore is released too many times it’s a sign of a bug.

If not given, value defaults to 1.

See also

Queue and Semaphore example - a parallel web spider

Condition

	
class toro.Condition(io_loop=None)[source]

	A condition allows one or more coroutines to wait until notified.

Like a standard Condition [http://docs.python.org/library/threading.html#threading.Condition], but does not need an underlying lock that
is acquired and released.

	Parameters:	
	io_loop: Optional custom IOLoop.

	
notify(n=1)[source]

	Wake up n waiters.

	Parameters:	
	n: The number of waiters to awaken (default: 1)

	
notify_all()[source]

	Wake up all waiters.

	
wait(deadline=None)[source]

	Wait for notify(). Returns a Future.

Timeout is executed after a timeout.

	Parameters:	
	deadline: Optional timeout, either an absolute timestamp
(as returned by io_loop.time()) or a datetime.timedelta for a
deadline relative to the current time.

Event

	
class toro.Event(io_loop=None)[source]

	An event blocks coroutines until its internal flag is set to True.

Similar to threading.Event [http://docs.python.org/library/threading.html#threading.Event].

See also

Event example - a caching proxy server

	Parameters:	
	io_loop: Optional custom IOLoop.

	
clear()[source]

	Reset the internal flag to False. Calls to wait()
will block until set() is called.

	
is_set()[source]

	Return True if and only if the internal flag is true.

	
set()[source]

	Set the internal flag to True. All waiters are awakened.
Calling wait() once the flag is true will not block.

	
wait(deadline=None)[source]

	Block until the internal flag is true. Returns a Future.

The Future raises Timeout after a timeout.

	Parameters:	
	callback: Function taking no arguments.

	deadline: Optional timeout, either an absolute timestamp
(as returned by io_loop.time()) or a datetime.timedelta for a
deadline relative to the current time.

Queues

Queue

	
class toro.Queue(maxsize=0, io_loop=None)[source]

	Create a queue object with a given maximum size.

If maxsize is 0 (the default) the queue size is unbounded.

Unlike the standard Queue [http://docs.python.org/library/queue.html#Queue.Queue], you can reliably know this Queue’s size
with qsize(), since your single-threaded Tornado application won’t
be interrupted between calling qsize() and doing an operation on the
Queue.

Examples:

Producer-consumer example

Queue and Semaphore example - a parallel web spider

	Parameters:	
	maxsize: Optional size limit (no limit by default).

	io_loop: Optional custom IOLoop.

	
empty()[source]

	Return True if the queue is empty, False otherwise.

	
full()[source]

	Return True if there are maxsize items in the queue.

Note

if the Queue was initialized with maxsize=0
(the default), then full() is never True.

	
get(deadline=None)[source]

	Remove and return an item from the queue. Returns a Future.

The Future blocks until an item is available, or raises
toro.Timeout.

	Parameters:	
	deadline: Optional timeout, either an absolute timestamp
(as returned by io_loop.time()) or a datetime.timedelta for a
deadline relative to the current time.

	
get_nowait()[source]

	Remove and return an item from the queue without blocking.

Return an item if one is immediately available, else raise
queue.Empty.

	
maxsize

	Number of items allowed in the queue.

	
put(item, deadline=None)[source]

	Put an item into the queue. Returns a Future.

The Future blocks until a free slot is available for item, or raises
toro.Timeout.

	Parameters:	
	deadline: Optional timeout, either an absolute timestamp
(as returned by io_loop.time()) or a datetime.timedelta for a
deadline relative to the current time.

	
put_nowait(item)[source]

	Put an item into the queue without blocking.

If no free slot is immediately available, raise queue.Full.

	
qsize()[source]

	Number of items in the queue

PriorityQueue

	
class toro.PriorityQueue(maxsize=0, io_loop=None)[source]

	A subclass of Queue that retrieves entries in priority order
(lowest first).

Entries are typically tuples of the form: (priority number, data).

	Parameters:	
	maxsize: Optional size limit (no limit by default).

	initial: Optional sequence of initial items.

	io_loop: Optional custom IOLoop.

LifoQueue

	
class toro.LifoQueue(maxsize=0, io_loop=None)[source]

	A subclass of Queue that retrieves most recently added entries
first.

	Parameters:	
	maxsize: Optional size limit (no limit by default).

	initial: Optional sequence of initial items.

	io_loop: Optional custom IOLoop.

JoinableQueue

	
class toro.JoinableQueue(maxsize=0, io_loop=None)[source]

	A subclass of Queue that additionally has task_done()
and join() methods.

See also

Queue and Semaphore example - a parallel web spider

	Parameters:	
	maxsize: Optional size limit (no limit by default).

	initial: Optional sequence of initial items.

	io_loop: Optional custom IOLoop.

	
join(deadline=None)[source]

	Block until all items in the queue are processed. Returns a Future.

The count of unfinished tasks goes up whenever an item is added to
the queue. The count goes down whenever a consumer calls
task_done() to indicate that all work on the item is complete.
When the count of unfinished tasks drops to zero, join()
unblocks.

The Future raises toro.Timeout if the count is not zero before
the deadline.

	Parameters:	
	deadline: Optional timeout, either an absolute timestamp
(as returned by io_loop.time()) or a datetime.timedelta for a
deadline relative to the current time.

	
task_done()[source]

	Indicate that a formerly enqueued task is complete.

Used by queue consumers. For each get used to
fetch a task, a subsequent call to task_done() tells the queue
that the processing on the task is complete.

If a join() is currently blocking, it will resume when all
items have been processed (meaning that a task_done() call was
received for every item that had been put into the
queue).

Raises ValueError if called more times than there were items
placed in the queue.

Exceptions

	
class toro.Timeout[source]

	Raised when a deadline passes before a Future is ready.

	
class toro.NotReady[source]

	Raised when accessing an AsyncResult that has no value yet.

	
class toro.AlreadySet[source]

	Raised when setting a value on an AsyncResult that already
has one.

Toro also uses exceptions Empty [http://docs.python.org/library/queue.html#Queue.Empty] and Full [http://docs.python.org/library/queue.html#Queue.Full] from the standard module Queue [http://docs.python.org/library/queue.html].

Class relationships

Toro uses some of its primitives in the implementation of others.
For example, JoinableQueue is a subclass of Queue, and it
contains an Event. (AsyncResult stands alone.)

[image: digraph Toro { graph [splines=false]; node [shape=record]; // First show UML-style subclass relationships. edge [label=subclass arrowtail=empty arrowhead=none dir=both]; Queue -> PriorityQueue Queue -> LifoQueue Queue -> JoinableQueue Semaphore -> BoundedSemaphore // Now UML-style composition or has-a relationships. edge [label="has a" arrowhead=odiamond arrowtail=none]; Event -> JoinableQueue Condition -> Event Event -> Semaphore Queue -> Semaphore Semaphore -> Lock }]

 Copyright 2012, A. Jesse Jiryu Davis.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Toro 1.0.1.dev0 documentation

Frequently Asked Questions

What’s it for?

Toro makes it easy for Tornado coroutines–that is, functions decorated with
gen.coroutine [http://www.tornadoweb.org/en/stable/gen.html#tornado.gen.coroutine]–to coordinate using Events, Conditions, Queues, and Semaphores.
Toro supports patterns in which coroutines wait for notifications from others.

Why the name?

A coroutine is often called a “coro”, and a library of primitives useful for
managing coroutines is called “coros [http://www.gevent.org/gevent.coros.html]” in Gevent and “coro [https://github.com/ironport/shrapnel]” in Shrapnel.
So I call a library to manage Tornado coroutines “toro”.

Why do I need synchronization primitives for a single-threaded app?

Protecting an object shared across coroutines is mostly unnecessary in a
single-threading Tornado program. For example, a multithreaded app would protect
counter with a Lock [http://docs.python.org/library/threading.html#lock-objects]:

import threading

lock = threading.Lock()
counter = 0

def inc():
 lock.acquire()
 counter += 1
 lock.release()

This isn’t needed in a Tornado coroutine, because the coroutine won’t be
interrupted until it explicitly yields. Thus Toro is not designed to protect
shared state.

Instead, Toro supports complex coordination among coroutines with
The Wait / Notify Pattern: Some coroutines wait at particular points in
their code for other coroutines to awaken them.

Why no RLock?

The standard-library RLock [http://docs.python.org/library/threading.html#rlock-objects] (reentrant lock) can be acquired multiple times by
a single thread without blocking, reducing the chance of deadlock, especially
in recursive functions. The thread currently holding the RLock is the “owning
thread.”

In Toro, simulating a concept like an “owning chain of coroutines” would be
over-complicated and under-useful, so there is no RLock, only a Lock.

Has Toro anything to do with Tulip?

Toro predates Tulip [http://code.google.com/p/tulip/], which has very similar ideas about coordinating async
coroutines using locks and queues. Toro’s author implemented Tulip’s queues,
and version 0.5 of Toro strives to match Tulip’s API.

The chief differences between Toro and Tulip are that Toro uses yield
instead of yield from, and that Toro uses absolute deadlines instead of
relative timeouts. Additionally, Toro’s Lock and
Semaphore aren’t context managers (they can’t be used with a
with statement); instead, the Futures returned from
Lock.acquire() and Semaphore.acquire() are context
managers:

>>> from tornado import gen
>>> import toro
>>> lock = toro.Lock()
>>>
>>> @gen.coroutine
... def f():
... with (yield lock.acquire()):
... assert lock.locked()
...
... assert not lock.locked()

 Copyright 2012, A. Jesse Jiryu Davis.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 previous |

 	Toro 1.0.1.dev0 documentation

Changelog

Changes in Version 1.0.1

Bug fix in RWLock: when max_readers > 1
release_read() must release one reader
in case acquire_read() was called at least once:

@gen.coroutine
def coro():
 lock = toro.RWLock(max_readers=10)
 assert not lock.locked()

 yield lock.acquire_read()
 lock.release_read()

But, in old version release_read() raises RuntimeException
if a lock in unlocked state, even if acquire_read()
was already called several times.

Patch by Alexander Gridnev [https://github.com/alexander-gridnev].

Changes in Version 1.0

This is the final release of Toro. Its features are merged into Tornado 4.2.
Further development of locks and queues for Tornado coroutines will continue
in Tornado.

For more information on the end of Toro,
read my article [http://emptysqua.re/blog/tornado-locks-and-queues/].
The Tornado changelog has comprehensive instructions on
porting from Toro’s locks and queues to Tornado 4.2 locks and queues [http://www.tornadoweb.org/en/stable/releases/v4.2.0.html#new-modules-tornado-locks-and-tornado-queues].

Toro 1.0 has one new feature, an RWLock contributed by
Alexander Gridnev [https://github.com/alexander-gridnev].
RWLock has not been merged into Tornado.

Changes in Version 0.8

Don’t depend on “nose” for tests. Improve test quality and coverage.
Delete unused method in internal _TimeoutFuture class.

Changes in Version 0.7

Bug fix in Semaphore: after a call to
acquire(), wait() should block
until another coroutine calls release():

@gen.coroutine
def coro():
 sem = toro.Semaphore(1)
 assert not sem.locked()

 # A semaphore with initial value of 1 can be acquired once,
 # then it's locked.
 sem.acquire()
 assert sem.locked()

 # Wait for another coroutine to release the semaphore.
 yield sem.wait()

However, there was a bug and wait() returned immediately
if the semaphore had ever been unlocked. I’m grateful to
“abing” [https://github.com/DanielBlack] on GitHub for noticing the bug and
contributing a fix.

Changes in Version 0.6

Queue now supports floating-point numbers for maxsize. A
maxsize of 1.3 is now equivalent to a maxsize of 2. Before, it had
been treated as infinite.

This feature is not intended to be useful, but to maintain an API similar to
asyncio and the standard library Queue.

Changes in Version 0.5

Rewritten for Tornado 3.

Dropped support for Tornado 2 and Python 2.5.

	Added support for Tornado 3’s Futures [http://www.tornadoweb.org/en/stable/concurrent.html#tornado.concurrent.Future]:

	
	All Toro methods that took callbacks no longer take callbacks but return
Futures.

	All Toro methods that took optional callbacks have been split into two
methods: one that returns a Future, and a “nowait” method that returns
immediately or raises an exception.

	AsyncResult.get_nowait() can raise NotReady

	Queue.get_nowait() can raise Empty

	Queue.put_nowait() can raise Full

	All Toro methods that return Futures accept an optional deadline
parameter. Whereas before each Toro class had different behavior after a
timeout, all now return a Future that raises toro.Timeout after the
deadline.

Toro’s API aims to be very similar to Tulip [http://code.google.com/p/tulip/], since Tulip will evolve into the
Python 3.4 standard library:

	Toro’s API has been updated to closely match the locks and queues in
Tulip.

	The requirement has been dropped that a coroutine that calls
put() resumes only after any coroutine it awakens.
Similar for get(). The order in which the two coroutines
resume is now unspecified.

	A Queue with maxsize 0 (the default) is no longer a “channel” as in Gevent
but is an unbounded Queue as in Tulip and the standard library. None is
no longer a valid maxsize.

	The initial argument to Queue() was removed.

	maxsize can no longer be changed after a Queue is created.

The chief differences between Toro and Tulip are that Toro uses yield
instead of yield from, and that Toro uses absolute deadlines instead of
relative timeouts. Additionally, Toro’s Lock and
Semaphore aren’t context managers (they can’t be used with a
with statement); instead, the Futures returned from
acquire() and acquire() are context
managers.

Changes in Version 0.4

Bugfix in JoinableQueue, JoinableQueue doesn’t accept an
explicit IOLoop [https://github.com/ajdavis/toro/issues/1].

Changes in Version 0.3

Increasing the maxsize of a Queue unblocks
callbacks waiting on put().

Travis integration.

Changes in Version 0.2

Python 3 support.

Bugfix in Semaphore: release() shouldn’t wake callbacks
registered with wait() unless no one is waiting for acquire().

Fixed error in the “Wait-Notify” table.

Added Lock example - graceful shutdown to docs.

Changes in Version 0.1.1

Fixed the docs to render correctly in PyPI.

Version 0.1

First release.

 Copyright 2012, A. Jesse Jiryu Davis.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	Toro 1.0.1.dev0 documentation

Index

 A
 | B
 | C
 | E
 | F
 | G
 | I
 | J
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | W

A

 	

 	acquire() (toro.Lock method)

 	

 	(toro.Semaphore method)

 	acquire_read() (toro.RWLock method)

 	acquire_write() (toro.RWLock method)

 	

 	AlreadySet (class in toro)

 	AsyncResult (class in toro)

B

 	

 	BoundedSemaphore (class in toro)

C

 	

 	clear() (toro.Event method)

 	Condition (class in toro)

 	

 	counter (toro.Semaphore attribute)

E

 	

 	empty() (toro.Queue method)

 	Event (class in toro)

 	examples.event_example (module)

 	

 	examples.lock_example (module)

 	examples.producer_consumer_example (module)

 	examples.web_spider_example (module)

F

 	

 	full() (toro.Queue method)

G

 	

 	get() (toro.AsyncResult method)

 	

 	(toro.Queue method)

 	

 	get_nowait() (toro.AsyncResult method)

 	

 	(toro.Queue method)

I

 	

 	is_set() (toro.Event method)

J

 	

 	join() (toro.JoinableQueue method)

 	

 	JoinableQueue (class in toro)

L

 	

 	LifoQueue (class in toro)

 	Lock (class in toro)

 	

 	locked() (toro.Lock method)

 	

 	(toro.RWLock method)

 	(toro.Semaphore method)

M

 	

 	maxsize (toro.Queue attribute)

N

 	

 	notify() (toro.Condition method)

 	notify_all() (toro.Condition method)

 	

 	NotReady (class in toro)

P

 	

 	PriorityQueue (class in toro)

 	put() (toro.Queue method)

 	

 	put_nowait() (toro.Queue method)

Q

 	

 	qsize() (toro.Queue method)

 	

 	Queue (class in toro)

R

 	

 	release() (toro.Lock method)

 	

 	(toro.Semaphore method)

 	release_read() (toro.RWLock method)

 	

 	release_write() (toro.RWLock method)

 	RWLock (class in toro)

S

 	

 	Semaphore (class in toro)

 	

 	set() (toro.AsyncResult method)

 	

 	(toro.Event method)

T

 	

 	task_done() (toro.JoinableQueue method)

 	Timeout (class in toro)

 	

 	toro (module), [1], [2]

W

 	

 	wait() (toro.Condition method)

 	

 	(toro.Event method)

 	(toro.Semaphore method)

 Copyright 2012, A. Jesse Jiryu Davis.
 Created using Sphinx 1.3.4.

 _static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/toro.png

search.html

 Navigation

 		
 index

 		Toro 1.0.1.dev0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, A. Jesse Jiryu Davis.
 Created using Sphinx 1.3.4.

_modules/toro.html

 Navigation

 		
 index

 		Toro 1.0.1.dev0 documentation »

 		Module code »

 Source code for toro

import contextlib
import heapq
import collections
from functools import partial
from Queue import Full, Empty

import tornado
from tornado import ioloop
from tornado import gen
from tornado.concurrent import Future

version_tuple = (1, 0, 1, 'dev0')

version = '.'.join(map(str, version_tuple))
"""Current version of Toro."""

__all__ = [
 # Exceptions
 'NotReady', 'AlreadySet', 'Full', 'Empty', 'Timeout',

 # Primitives
 'AsyncResult', 'Event', 'Condition', 'Semaphore', 'BoundedSemaphore',
 'Lock',

 # Queues
 'Queue', 'PriorityQueue', 'LifoQueue', 'JoinableQueue'
]

[docs]class NotReady(Exception):
 """Raised when accessing an :class:`AsyncResult` that has no value yet."""
 pass

[docs]class AlreadySet(Exception):
 """Raised when setting a value on an :class:`AsyncResult` that already
 has one."""
 pass

[docs]class Timeout(Exception):
 """Raised when a deadline passes before a Future is ready."""

 def __str__(self):
 return "Timeout"

class _TimeoutFuture(Future):

 def __init__(self, deadline, io_loop):
 """Create a Future with optional deadline.

 If deadline is not None, it may be a number denoting a unix timestamp
 (as returned by ``io_loop.time()``) or a ``datetime.timedelta`` object
 for a deadline relative to the current time.

 set_exception(toro.Timeout()) is executed after a timeout.
 """

 super(_TimeoutFuture, self).__init__()
 self.io_loop = io_loop
 if deadline is not None:
 callback = partial(self.set_exception, Timeout())
 self._timeout_handle = io_loop.add_timeout(deadline, callback)
 else:
 self._timeout_handle = None

 def set_result(self, result):
 self._cancel_timeout()
 super(_TimeoutFuture, self).set_result(result)

 def set_exception(self, exception):
 self._cancel_timeout()
 super(_TimeoutFuture, self).set_exception(exception)

 def _cancel_timeout(self):
 if self._timeout_handle:
 self.io_loop.remove_timeout(self._timeout_handle)
 self._timeout_handle = None

class _ContextManagerList(list):
 def __enter__(self, *args, **kwargs):
 for obj in self:
 obj.__enter__(*args, **kwargs)

 def __exit__(self, *args, **kwargs):
 for obj in self:
 obj.__exit__(*args, **kwargs)

class _ContextManagerFuture(Future):
 """A Future that can be used with the "with" statement.

 When a coroutine yields this Future, the return value is a context manager
 that can be used like:

 with (yield future):
 pass

 At the end of the block, the Future's exit callback is run. Used for
 Lock.acquire, Semaphore.acquire, RWLock.acquire_read / acquire_write.
 """
 def __init__(self, wrapped, exit_callback):
 super(_ContextManagerFuture, self).__init__()
 wrapped.add_done_callback(self._done_callback)
 self.exit_callback = exit_callback

 def _done_callback(self, wrapped):
 if wrapped.exception():
 self.set_exception(wrapped.exception())
 else:
 self.set_result(wrapped.result())

 def result(self):
 if self.exception():
 raise self.exception()

 # Otherwise return a context manager that cleans up after the block.
 @contextlib.contextmanager
 def f():
 try:
 yield
 finally:
 self.exit_callback()
 return f()

def _consume_expired_waiters(waiters):
 # Delete waiters at the head of the queue who've timed out
 while waiters and waiters[0].done():
 waiters.popleft()

_null_result = object()

[docs]class AsyncResult(object):
 """A one-time event that stores a value or an exception.

 The only distinction between AsyncResult and a simple Future is that
 AsyncResult lets coroutines wait with a deadline. The deadline can be
 configured separately for each waiter.

 An :class:`AsyncResult` instance cannot be reset.

 :Parameters:
 - `io_loop`: Optional custom IOLoop.
 """

 def __init__(self, io_loop=None):
 self.io_loop = io_loop or ioloop.IOLoop.current()
 self.value = _null_result
 self.waiters = []

 def __str__(self):
 result = '<%s ' % (self.__class__.__name__,)
 if self.ready():
 result += 'value=%r' % self.value
 else:
 result += 'unset'
 if self.waiters:
 result += ' waiters[%s]' % len(self.waiters)

 return result + '>'

[docs] def set(self, value):
 """Set a value and wake up all the waiters."""
 if self.ready():
 raise AlreadySet

 self.value = value
 waiters, self.waiters = self.waiters, []
 for waiter in waiters:
 if not waiter.done(): # Might have timed out
 waiter.set_result(value)

 def ready(self):
 return self.value is not _null_result

[docs] def get(self, deadline=None):
 """Get a value once :meth:`set` is called. Returns a Future.

 The Future's result will be the value. The Future raises
 :exc:`toro.Timeout` if no value is set before the deadline.

 :Parameters:
 - `deadline`: Optional timeout, either an absolute timestamp
 (as returned by ``io_loop.time()``) or a ``datetime.timedelta`` for
 a deadline relative to the current time.
 """
 future = _TimeoutFuture(deadline, self.io_loop)
 if self.ready():
 future.set_result(self.value)
 else:
 self.waiters.append(future)

 return future

[docs] def get_nowait(self):
 """Get the value if ready, or raise :class:`NotReady`."""
 if self.ready():
 return self.value
 else:
 raise NotReady

[docs]class Condition(object):
 """A condition allows one or more coroutines to wait until notified.

 Like a standard Condition_, but does not need an underlying lock that
 is acquired and released.

 .. _Condition: http://docs.python.org/library/threading.html#threading.Condition

 :Parameters:
 - `io_loop`: Optional custom IOLoop.
 """

 def __init__(self, io_loop=None):
 self.io_loop = io_loop or ioloop.IOLoop.current()
 self.waiters = collections.deque() # Queue of _Waiter objects

 def __str__(self):
 result = '<%s' % (self.__class__.__name__,)
 if self.waiters:
 result += ' waiters[%s]' % len(self.waiters)
 return result + '>'

[docs] def wait(self, deadline=None):
 """Wait for :meth:`notify`. Returns a Future.

 :exc:`~toro.Timeout` is executed after a timeout.

 :Parameters:
 - `deadline`: Optional timeout, either an absolute timestamp
 (as returned by ``io_loop.time()``) or a ``datetime.timedelta`` for a
 deadline relative to the current time.
 """
 future = _TimeoutFuture(deadline, self.io_loop)
 self.waiters.append(future)
 return future

[docs] def notify(self, n=1):
 """Wake up `n` waiters.

 :Parameters:
 - `n`: The number of waiters to awaken (default: 1)
 """
 waiters = [] # Waiters we plan to run right now
 while n and self.waiters:
 waiter = self.waiters.popleft()
 if not waiter.done(): # Might have timed out
 n -= 1
 waiters.append(waiter)

 for waiter in waiters:
 waiter.set_result(None)

[docs] def notify_all(self):
 """Wake up all waiters."""
 self.notify(len(self.waiters))

TODO: show correct examples that avoid thread / process issues w/ concurrent.futures.Future
[docs]class Event(object):
 """An event blocks coroutines until its internal flag is set to True.

 Similar to threading.Event_.

 .. _threading.Event: http://docs.python.org/library/threading.html#threading.Event

 .. seealso:: :doc:`examples/event_example`

 :Parameters:
 - `io_loop`: Optional custom IOLoop.
 """

 def __init__(self, io_loop=None):
 self.io_loop = io_loop or ioloop.IOLoop.current()
 self.condition = Condition(io_loop=io_loop)
 self._flag = False

 def __str__(self):
 return '<%s %s>' % (
 self.__class__.__name__, 'set' if self._flag else 'clear')

[docs] def is_set(self):
 """Return ``True`` if and only if the internal flag is true."""
 return self._flag

[docs] def set(self):
 """Set the internal flag to ``True``. All waiters are awakened.
 Calling :meth:`wait` once the flag is true will not block.
 """
 self._flag = True
 self.condition.notify_all()

[docs] def clear(self):
 """Reset the internal flag to ``False``. Calls to :meth:`wait`
 will block until :meth:`set` is called.
 """
 self._flag = False

[docs] def wait(self, deadline=None):
 """Block until the internal flag is true. Returns a Future.

 The Future raises :exc:`~toro.Timeout` after a timeout.

 :Parameters:
 - `callback`: Function taking no arguments.
 - `deadline`: Optional timeout, either an absolute timestamp
 (as returned by ``io_loop.time()``) or a ``datetime.timedelta`` for a
 deadline relative to the current time.
 """
 if self._flag:
 future = _TimeoutFuture(None, self.io_loop)
 future.set_result(None)
 return future
 else:
 return self.condition.wait(deadline)

[docs]class Queue(object):
 """Create a queue object with a given maximum size.

 If `maxsize` is 0 (the default) the queue size is unbounded.

 Unlike the `standard Queue`_, you can reliably know this Queue's size
 with :meth:`qsize`, since your single-threaded Tornado application won't
 be interrupted between calling :meth:`qsize` and doing an operation on the
 Queue.

 Examples:

 :doc:`examples/producer_consumer_example`

 :doc:`examples/web_spider_example`

 :Parameters:
 - `maxsize`: Optional size limit (no limit by default).
 - `io_loop`: Optional custom IOLoop.

 .. _`Gevent's Queue`: http://www.gevent.org/gevent.queue.html

 .. _`standard Queue`: http://docs.python.org/library/queue.html#Queue.Queue
 """
 def __init__(self, maxsize=0, io_loop=None):
 self.io_loop = io_loop or ioloop.IOLoop.current()
 if maxsize is None:
 raise TypeError("maxsize can't be None")

 if maxsize < 0:
 raise ValueError("maxsize can't be negative")

 self._maxsize = maxsize

 # _TimeoutFutures
 self.getters = collections.deque([])
 # Pairs of (item, _TimeoutFuture)
 self.putters = collections.deque([])
 self._init(maxsize)

 # These three are overridable in subclasses.
 def _init(self, maxsize):
 self.queue = collections.deque()

 def _get(self):
 return self.queue.popleft()

 def _put(self, item):
 self.queue.append(item)

 def __repr__(self):
 return '<%s at %s %s>' % (
 type(self).__name__, hex(id(self)), self._format())

 def __str__(self):
 return '<%s %s>' % (type(self).__name__, self._format())

 def _format(self):
 result = 'maxsize=%r' % (self.maxsize,)
 if getattr(self, 'queue', None):
 result += ' queue=%r' % self.queue
 if self.getters:
 result += ' getters[%s]' % len(self.getters)
 if self.putters:
 result += ' putters[%s]' % len(self.putters)
 return result

 def _consume_expired_putters(self):
 # Delete waiters at the head of the queue who've timed out
 while self.putters and self.putters[0][1].done():
 self.putters.popleft()

[docs] def qsize(self):
 """Number of items in the queue"""
 return len(self.queue)

 @property
 def maxsize(self):
 """Number of items allowed in the queue."""
 return self._maxsize

[docs] def empty(self):
 """Return ``True`` if the queue is empty, ``False`` otherwise."""
 return not self.queue

[docs] def full(self):
 """Return ``True`` if there are `maxsize` items in the queue.

 .. note:: if the Queue was initialized with `maxsize=0`
 (the default), then :meth:`full` is never ``True``.
 """
 if self.maxsize == 0:
 return False
 else:
 return self.maxsize <= self.qsize()

[docs] def put(self, item, deadline=None):
 """Put an item into the queue. Returns a Future.

 The Future blocks until a free slot is available for `item`, or raises
 :exc:`toro.Timeout`.

 :Parameters:
 - `deadline`: Optional timeout, either an absolute timestamp
 (as returned by ``io_loop.time()``) or a ``datetime.timedelta`` for a
 deadline relative to the current time.
 """
 _consume_expired_waiters(self.getters)
 future = _TimeoutFuture(deadline, self.io_loop)
 if self.getters:
 assert not self.queue, "queue non-empty, why are getters waiting?"
 getter = self.getters.popleft()

 # Use _put and _get instead of passing item straight to getter, in
 # case a subclass has logic that must run (e.g. JoinableQueue).
 self._put(item)
 getter.set_result(self._get())
 future.set_result(None)
 else:
 if self.maxsize and self.maxsize <= self.qsize():
 self.putters.append((item, future))
 else:
 self._put(item)
 future.set_result(None)

 return future

[docs] def put_nowait(self, item):
 """Put an item into the queue without blocking.

 If no free slot is immediately available, raise queue.Full.
 """
 _consume_expired_waiters(self.getters)
 if self.getters:
 assert not self.queue, "queue non-empty, why are getters waiting?"
 getter = self.getters.popleft()

 self._put(item)
 getter.set_result(self._get())
 elif self.maxsize and self.maxsize <= self.qsize():
 raise Full
 else:
 self._put(item)

[docs] def get(self, deadline=None):
 """Remove and return an item from the queue. Returns a Future.

 The Future blocks until an item is available, or raises
 :exc:`toro.Timeout`.

 :Parameters:
 - `deadline`: Optional timeout, either an absolute timestamp
 (as returned by ``io_loop.time()``) or a ``datetime.timedelta`` for a
 deadline relative to the current time.
 """
 self._consume_expired_putters()
 future = _TimeoutFuture(deadline, self.io_loop)
 if self.putters:
 assert self.full(), "queue not full, why are putters waiting?"
 item, putter = self.putters.popleft()
 self._put(item)
 putter.set_result(None)
 future.set_result(self._get())
 elif self.qsize():
 future.set_result(self._get())
 else:
 self.getters.append(future)

 return future

[docs] def get_nowait(self):
 """Remove and return an item from the queue without blocking.

 Return an item if one is immediately available, else raise
 :exc:`queue.Empty`.
 """
 self._consume_expired_putters()
 if self.putters:
 assert self.full(), "queue not full, why are putters waiting?"
 item, putter = self.putters.popleft()
 self._put(item)
 putter.set_result(None)
 return self._get()
 elif self.qsize():
 return self._get()
 else:
 raise Empty

[docs]class PriorityQueue(Queue):
 """A subclass of :class:`Queue` that retrieves entries in priority order
 (lowest first).

 Entries are typically tuples of the form: ``(priority number, data)``.

 :Parameters:
 - `maxsize`: Optional size limit (no limit by default).
 - `initial`: Optional sequence of initial items.
 - `io_loop`: Optional custom IOLoop.
 """
 def _init(self, maxsize):
 self.queue = []

 def _put(self, item, heappush=heapq.heappush):
 heappush(self.queue, item)

 def _get(self, heappop=heapq.heappop):
 return heappop(self.queue)

[docs]class LifoQueue(Queue):
 """A subclass of :class:`Queue` that retrieves most recently added entries
 first.

 :Parameters:
 - `maxsize`: Optional size limit (no limit by default).
 - `initial`: Optional sequence of initial items.
 - `io_loop`: Optional custom IOLoop.
 """
 def _init(self, maxsize):
 self.queue = []

 def _put(self, item):
 self.queue.append(item)

 def _get(self):
 return self.queue.pop()

[docs]class JoinableQueue(Queue):
 """A subclass of :class:`Queue` that additionally has :meth:`task_done`
 and :meth:`join` methods.

 .. seealso:: :doc:`examples/web_spider_example`

 :Parameters:
 - `maxsize`: Optional size limit (no limit by default).
 - `initial`: Optional sequence of initial items.
 - `io_loop`: Optional custom IOLoop.
 """
 def __init__(self, maxsize=0, io_loop=None):
 Queue.__init__(self, maxsize=maxsize, io_loop=io_loop)
 self.unfinished_tasks = 0
 self._finished = Event(io_loop)
 self._finished.set()

 def _format(self):
 result = Queue._format(self)
 if self.unfinished_tasks:
 result += ' tasks=%s' % self.unfinished_tasks
 return result

 def _put(self, item):
 self.unfinished_tasks += 1
 self._finished.clear()
 Queue._put(self, item)

[docs] def task_done(self):
 """Indicate that a formerly enqueued task is complete.

 Used by queue consumers. For each :meth:`get <Queue.get>` used to
 fetch a task, a subsequent call to :meth:`task_done` tells the queue
 that the processing on the task is complete.

 If a :meth:`join` is currently blocking, it will resume when all
 items have been processed (meaning that a :meth:`task_done` call was
 received for every item that had been :meth:`put <Queue.put>` into the
 queue).

 Raises ``ValueError`` if called more times than there were items
 placed in the queue.
 """
 if self.unfinished_tasks <= 0:
 raise ValueError('task_done() called too many times')
 self.unfinished_tasks -= 1
 if self.unfinished_tasks == 0:
 self._finished.set()

[docs] def join(self, deadline=None):
 """Block until all items in the queue are processed. Returns a Future.

 The count of unfinished tasks goes up whenever an item is added to
 the queue. The count goes down whenever a consumer calls
 :meth:`task_done` to indicate that all work on the item is complete.
 When the count of unfinished tasks drops to zero, :meth:`join`
 unblocks.

 The Future raises :exc:`toro.Timeout` if the count is not zero before
 the deadline.

 :Parameters:
 - `deadline`: Optional timeout, either an absolute timestamp
 (as returned by ``io_loop.time()``) or a ``datetime.timedelta`` for a
 deadline relative to the current time.
 """
 return self._finished.wait(deadline)

[docs]class Semaphore(object):
 """A lock that can be acquired a fixed number of times before blocking.

 A Semaphore manages a counter representing the number of release() calls
 minus the number of acquire() calls, plus an initial value. The acquire()
 method blocks if necessary until it can return without making the counter
 negative.

 If not given, value defaults to 1.

 :meth:`acquire` supports the context manager protocol:

 >>> from tornado import gen
 >>> import toro
 >>> semaphore = toro.Semaphore()
 >>>
 >>> @gen.coroutine
 ... def f():
 ... with (yield semaphore.acquire()):
 ... assert semaphore.locked()
 ...
 ... assert not semaphore.locked()

 .. note:: Unlike the standard threading.Semaphore_, a :class:`Semaphore`
 can tell you the current value of its :attr:`counter`, because code in a
 single-threaded Tornado app can check these values and act upon them
 without fear of interruption from another thread.

 .. _threading.Semaphore: http://docs.python.org/library/threading.html#threading.Semaphore

 .. seealso:: :doc:`examples/web_spider_example`

 :Parameters:
 - `value`: An int, the initial value (default 1).
 - `io_loop`: Optional custom IOLoop.
 """
 def __init__(self, value=1, io_loop=None):
 if value < 0:
 raise ValueError('semaphore initial value must be >= 0')

 # The semaphore is implemented as a Queue with 'value' objects
 self.q = Queue(io_loop=io_loop)
 for _ in range(value):
 self.q.put_nowait(None)

 self._unlocked = Event(io_loop=io_loop)
 if value:
 self._unlocked.set()

 def __repr__(self):
 return '<%s at %s%s>' % (
 type(self).__name__, hex(id(self)), self._format())

 def __str__(self):
 return '<%s%s>' % (
 self.__class__.__name__, self._format())

 def _format(self):
 return ' counter=%s' % self.counter

 @property
 def counter(self):
 """An integer, the current semaphore value"""
 return self.q.qsize()

[docs] def locked(self):
 """True if :attr:`counter` is zero"""
 return self.q.empty()

[docs] def release(self):
 """Increment :attr:`counter` and wake one waiter.
 """
 self.q.put(None)
 if not self.locked():
 # No one was waiting on acquire(), so self.q.qsize() is positive
 self._unlocked.set()

[docs] def wait(self, deadline=None):
 """Wait for :attr:`locked` to be False. Returns a Future.

 The Future raises :exc:`toro.Timeout` after the deadline.

 :Parameters:
 - `deadline`: Optional timeout, either an absolute timestamp
 (as returned by ``io_loop.time()``) or a ``datetime.timedelta`` for a
 deadline relative to the current time.
 """
 return self._unlocked.wait(deadline)

[docs] def acquire(self, deadline=None):
 """Decrement :attr:`counter`. Returns a Future.

 Block if the counter is zero and wait for a :meth:`release`. The
 Future raises :exc:`toro.Timeout` after the deadline.

 :Parameters:
 - `deadline`: Optional timeout, either an absolute timestamp
 (as returned by ``io_loop.time()``) or a ``datetime.timedelta`` for a
 deadline relative to the current time.
 """
 queue_future = self.q.get(deadline)
 if self.q.empty():
 self._unlocked.clear()
 future = _ContextManagerFuture(queue_future, self.release)
 return future

 def __enter__(self):
 raise RuntimeError(
 "Use Semaphore like 'with (yield semaphore)', not like"
 " 'with semaphore'")

 __exit__ = __enter__

[docs]class BoundedSemaphore(Semaphore):
 """A semaphore that prevents release() being called too often.

 A bounded semaphore checks to make sure its current value doesn't exceed
 its initial value. If it does, ``ValueError`` is raised. In most
 situations semaphores are used to guard resources with limited capacity.
 If the semaphore is released too many times it's a sign of a bug.

 If not given, *value* defaults to 1.

 .. seealso:: :doc:`examples/web_spider_example`
 """
 def __init__(self, value=1, io_loop=None):
 super(BoundedSemaphore, self).__init__(value=value, io_loop=io_loop)
 self._initial_value = value

 def release(self):
 if self.counter >= self._initial_value:
 raise ValueError("Semaphore released too many times")
 return super(BoundedSemaphore, self).release()

[docs]class Lock(object):
 """A lock for coroutines.

 It is created unlocked. When unlocked, :meth:`acquire` changes the state
 to locked. When the state is locked, yielding :meth:`acquire` waits until
 a call to :meth:`release`.

 The :meth:`release` method should only be called in the locked state;
 an attempt to release an unlocked lock raises RuntimeError.

 When more than one coroutine is waiting for the lock, the first one
 registered is awakened by :meth:`release`.

 :meth:`acquire` supports the context manager protocol:

 >>> from tornado import gen
 >>> import toro
 >>> lock = toro.Lock()
 >>>
 >>> @gen.coroutine
 ... def f():
 ... with (yield lock.acquire()):
 ... assert lock.locked()
 ...
 ... assert not lock.locked()

 .. note:: Unlike with the standard threading.Lock_, code in a
 single-threaded Tornado application can check if a :class:`Lock`
 is :meth:`locked`, and act on that information without fear that another
 thread has grabbed the lock, provided you do not yield to the IOLoop
 between checking :meth:`locked` and using a protected resource.

 .. _threading.Lock: http://docs.python.org/2/library/threading.html#lock-objects

 .. seealso:: :doc:`examples/lock_example`

 :Parameters:
 - `io_loop`: Optional custom IOLoop.
 """
 def __init__(self, io_loop=None):
 self._block = BoundedSemaphore(value=1, io_loop=io_loop)

 def __str__(self):
 return "<%s _block=%s>" % (
 self.__class__.__name__,
 self._block)

[docs] def acquire(self, deadline=None):
 """Attempt to lock. Returns a Future.

 The Future raises :exc:`toro.Timeout` if the deadline passes.

 :Parameters:
 - `deadline`: Optional timeout, either an absolute timestamp
 (as returned by ``io_loop.time()``) or a ``datetime.timedelta`` for a
 deadline relative to the current time.
 """
 return self._block.acquire(deadline)

[docs] def release(self):
 """Unlock.

 If any coroutines are waiting for :meth:`acquire`,
 the first in line is awakened.

 If not locked, raise a RuntimeError.
 """
 if not self.locked():
 raise RuntimeError('release unlocked lock')
 self._block.release()

[docs] def locked(self):
 """``True`` if the lock has been acquired"""
 return self._block.locked()

 def __enter__(self):
 raise RuntimeError(
 "Use Lock like 'with (yield lock)', not like"
 " 'with lock'")

 __exit__ = __enter__

if tornado.version_info[:2] >= (4, 2):
 tornado_multi_future = gen.multi_future
else:
 tornado_multi_future = lambda futures, quiet_exceptions: futures

[docs]class RWLock(object):
 """A reader-writer lock for coroutines.

 It is created unlocked. When unlocked, :meth:`acquire_write` always changes
 the state to locked. When unlocked, :meth:`acquire_read` can changed the
 state to locked, if :meth:`acquire_read` was called max_readers times. When
 the state is locked, yielding :meth:`acquire_read`/meth:`acquire_write`
 waits until a call to :meth:`release_write` in case of locking on write, or
 :meth:`release_read` in case of locking on read.

 The :meth:`release_read` method should only be called in the locked-on-read
 state; an attempt to release an unlocked lock raises RuntimeError.

 The :meth:`release_write` method should only be called in the locked on
 write state; an attempt to release an unlocked lock raises RuntimeError.

 When more than one coroutine is waiting for the lock, the first one
 registered is awakened by :meth:`release_read`/:meth:`release_write`.

 :meth:`acquire_read`/:meth:`acquire_write` support the context manager
 protocol:

 >>> from tornado import gen
 >>> import toro
 >>> lock = toro.RWLock(max_readers=10)
 >>>
 >>> @gen.coroutine
 ... def f():
 ... with (yield lock.acquire_read()):
 ... assert not lock.locked()
 ...
 ... with (yield lock.acquire_write()):
 ... assert lock.locked()
 ...
 ... assert not lock.locked()

 :Parameters:
 - `max_readers`: Optional max readers value, default 1.
 - `io_loop`: Optional custom IOLoop.
 """
 def __init__(self, max_readers=1, io_loop=None):
 self._max_readers = max_readers
 self._block = BoundedSemaphore(value=max_readers, io_loop=io_loop)

 def __str__(self):
 return "<%s _block=%s>" % (
 self.__class__.__name__,
 self._block)

[docs] def acquire_read(self, deadline=None):
 """Attempt to lock for read. Returns a Future.

 The Future raises :exc:`toro.Timeout` if the deadline passes.

 :Parameters:
 - `deadline`: Optional timeout, either an absolute timestamp
 (as returned by ``io_loop.time()``) or a ``datetime.timedelta`` for
 a deadline relative to the current time.
 """
 return self._block.acquire(deadline)

 @gen.coroutine
[docs] def acquire_write(self, deadline=None):
 """Attempt to lock for write. Returns a Future.

 The Future raises :exc:`toro.Timeout` if the deadline passes.

 :Parameters:
 - `deadline`: Optional timeout, either an absolute timestamp
 (as returned by ``io_loop.time()``) or a ``datetime.timedelta`` for
 a deadline relative to the current time.
 """
 futures = [self._block.acquire(deadline) for _ in
 xrange(self._max_readers)]
 try:
 managers = yield tornado_multi_future(futures,
 quiet_exceptions=Timeout)
 except Timeout:
 for f in futures:
 # Avoid traceback logging.
 f.exception()
 raise

 raise gen.Return(_ContextManagerList(managers))

[docs] def release_read(self):
 """Releases one reader.

 If any coroutines are waiting for :meth:`acquire_read` (in case of full
 readers queue), the first in line is awakened.

 If not locked, raise a RuntimeError.
 """
 if self._block.counter == self._max_readers:
 raise RuntimeError('release unlocked lock')
 self._block.release()

[docs] def release_write(self):
 """Releases after write.

 The first in queue will be awakened after release.

 If not locked, raise a RuntimeError.
 """
 if not self.locked():
 raise RuntimeError('release unlocked lock')
 for i in xrange(self._max_readers):
 self._block.release()

[docs] def locked(self):
 """``True`` if the lock has been acquired"""
 return self._block.locked()

 def __enter__(self):
 raise RuntimeError(
 "Use RWLock like 'with (yield lock)', not like"
 " 'with lock'")

 __exit__ = __enter__

 © Copyright 2012, A. Jesse Jiryu Davis.
 Created using Sphinx 1.3.4.

_modules/index.html

 Navigation

 		
 index

 		Toro 1.0.1.dev0 documentation »

 All modules for which code is available

		toro

 © Copyright 2012, A. Jesse Jiryu Davis.
 Created using Sphinx 1.3.4.

_images/toro.png

_images/graphviz-3888628efb4a6706d43e2de4464ce6b4c1f4a759.png
sy

Queue

Tass sulpclass

belass. s

Condition

}ns a

Event

hasa \has a

PriorityQueue

LifoQueue

JoinableQueue

Semaphore

subclass\ has a

BoundedSemaphore

Lock

